生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

記事一覧

世界モデルとは?仕組み・従来型AIとの違い・メリット・現状課題を徹底紹介!

世界モデルとは?仕組み・従来型AIとの違い・メリット・現状課題を徹底紹介!

世界モデルはAIが現実世界の物理法則や因果関係を内部に再現し、過去・現在・未来を一貫して推論 自動運転での危険予知、製造業でのデジタルツインによる開発効率化、ロ...

AI開発に強いシステム開発企業23社!日本最大級AIコンシェルジュ厳選【2024年最新版】

AI開発・生成AI活用に強い企業24社!外注前の検討ポイント・最適な発注形態は?日本最大級AIコンシェルジュ厳選【2026年最新版】

これまでは、製造業における外観検査や小売業での需要予測のように特定の業務を効率化するAI活用が主流でした。しかし近年、ChatGPTを代表とする生成AI(ジェネ...

AI駆動開発の費用を徹底解説!内訳・隠れコスト・従来ROIとの違いは?

AI駆動開発の費用を徹底解説!内訳・隠れコスト・従来ROIとの違いは?

従来の開発人件費に加え、AIが思考・試行錯誤する際の推論コストや、自社ナレッジを維持する埋め込み・データベース費用が主要な変動費 hAI生成物の整合性を監督し、...

AI駆動開発でMLOpsはなぜ重要?導入手順7ステップも徹底解説!

AI駆動開発でMLOpsはなぜ重要?導入手順7ステップも徹底解説!

AI駆動開発による高速なシステム構築も、MLOpsによる継続的な品質管理がなければ負の遺産を量産するリスク MLOpsはモデルの精度指標と事業KPIを紐付けるこ...

AI駆動開発に必要な人材とは?考え方や活用ポイント、内製化・外注すべき領域を徹底解説!

AI駆動開発に必要な人材とは?考え方や活用ポイント、内製化・外注すべき領域を徹底解説!

PM、オーケストレーター、データエンジニアが連携する「チーム設計」こそが重要 エンジニアの役割は「書くこと」から「ビジネス要件をAIに正しく伝え、成果物を厳格に...

AIエージェント導入・開発の費用を徹底解説!内訳・隠れコスト・最適化の工夫ポイントまで

AIエージェント導入・開発の費用を徹底解説!内訳・隠れコスト・最適化の工夫ポイントまで

AIエージェントは推論ループを行うため、API利用料(トークン消費)が指数関数的に増大するリスクがあり設計段階でのコスト制御が不可欠 初期の業務整理と技術検証を...

AI駆動開発特有のセキュリティリスクと基本対策を徹底解説!リスクマネジメントの方法は?

AI駆動開発特有のセキュリティリスクと基本対策を徹底解説!リスクマネジメントの方法は?

従来のインフラ・アプリ保護に加え、「学習データ(汚染)」「モデル(盗難・解析)」「判断ロジック(敵対的サンプル)」という3つの新領域を守る設計 AIは脆弱なコー...

AIエージェントによる業務効率化とは?従来の業務効率化ツールとの違い・事例・ポイントを徹底解説!

AIエージェントによる業務効率化とは?従来の業務効率化ツールとの違い・事例・ポイントを徹底解説!

従来のRPAが手順をなぞるものだったのに対し、AIエージェントは目的を理解し、自らタスクを分解・実行する API連携を通じて複数のSaaSや社内システムを跨いで...

AIエージェントと従来システムの導入プロセスの違いは?検討ポイント・よくある失敗例・対策方法を徹底解説!

AIエージェントと従来システムの導入プロセスの違いは?検討ポイント・よくある失敗例・対策方法を徹底解説!

AIエージェントは従来のシステムのように仕様通りに組んで終わりではなく、ゴールと制約を与え、運用を通じて挙動を改善し続ける 禁止事項や判断停止条件、人間が最終承...

AIエージェントのセキュリティはなぜ難しい?主なリスク事例・対策を徹底解説!

AIエージェントのセキュリティはなぜ難しい?主なリスク事例・対策を徹底解説!

AIエージェントはAPI連携等を通じて実操作を伴うため、従来のLLMよりも被害が物理的・直接的になりやすい 最小権限の徹底、ガードレールの実装、重要な操作への人...

1 2 3 4 91