生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

記事一覧

ベクトル検索の記事一覧

ChatGPTでRAGを活用する方法は?課題や実装方法、活用事例、注意点を徹底解説!

ChatGPTでRAGを活用する方法は?課題や実装方法、活用事例、注意点を徹底解説!

多くの企業がChatGPTの活用を進める中で、機密情報の取り扱いやハルシネーションといった課題に直面しています。特に、顧客情報や社内の機密データを扱う部門では、...

ベクトルデータベースとは?RAGの精度向上に欠かせない技術の仕組みや課題、活用ケースを徹底解説!

ベクトルデータベースとは?RAGの精度向上に欠かせない技術の仕組みや課題、活用ケースを徹底解説!

ベクトルデータベースはAIによる「意味の数値化(ベクトル化)」により、曖昧な指示でも文脈を理解した検索が可能 生成AIのハルシネーションや知識不足を補う外部記憶...

RAGの運用体制どうする?生成AIシステムの精度を支えるチーム構築方法・改善ポイントを徹底紹介!

RAGの運用体制どうする?生成AIシステムの精度を支えるチーム構築方法・改善ポイントを徹底紹介!

RAGの価値は「作って終わり」ではなく、データの陳腐化や検索精度の悪化を防ぐ運用体制こそが要 データの品質と鮮度を保つ「ナレッジ管理の仕組み化」と、システムの劣...

NLWebとは?ウェブサイトを対話型AIエージェントに変える機能・使い方・メリット・活用例・注意点を徹底紹介!

NLWebとは?ウェブサイトを対話型AIエージェントに変える機能・使い方・メリット・活用例・注意点を徹底紹介!

NLWebは既存のウェブサイトを、自然言語での対話が可能なAIエージェント型インターフェースへと変換するオープンソースプロジェクト RAG(検索拡張生成)システ...

RAGのデータ前処理はなぜ重要?精度低迷の原因となるリスク・実施方法5ステップを徹底解説!

RAGのデータ前処理はなぜ重要?精度低迷の原因となるリスク・実施方法5ステップを徹底解説!

RAGの回答精度は、参照するデータの品質が直接影響するため、データ前処理は「ハルシネーション」を防ぎ、検索の精度と速度を高めるための不可欠 効果的なデータ前処理...

RAGを導入するまでの8ステップ!プロジェクトの進め方や技術選定のポイントも徹底解説!

RAGを導入するまでの8ステップ!プロジェクトの進め方や技術選定のポイントも徹底解説!

RAG導入プロジェクトは「どの業務の何を解決したいか」という目的設定から始め、その効果を測るための具体的なKGI・KPIを設計 PoC(概念実証)を通じて、限定...

なぜRAGの評価は難しい?評価手法・重要フレームワーク・生成AIの精度を上げる改善方法を徹底解説!

なぜRAGの評価は難しい?評価手法・重要フレームワーク・生成AIの精度を上げる改善方法を徹底解説!

RAGの評価は「検索(Retrieval)」と「生成(Generation)」に分けて行う必要 評価手法の主流は、高性能なLLMを審査員として使う「LLM-as...

RAG導入の費用対効果を上げるには?原因・精度改善の重要性・手順・KPI例を徹底解説!

RAG導入の費用対効果を上げるには?原因・精度改善の重要性・手順・KPI例を徹底解説!

RAG導入の成否は、事前に「定量的効果(コスト削減など)」と「定性的効果(満足度向上など)」を明確に定義できるかにかかっています 回答精度の低さやユーザーに使わ...

RAGのチューニングはなぜ必要?精度を下げない戦略・具体的検討方法を徹底解説!

RAGのチューニングはなぜ必要?精度を下げない戦略・具体的検討方法を徹底解説!

RAGの精度は単一の要因ではなく、「データ前処理」「埋め込みモデル」「検索アルゴリズム」「生成(プロンプト)」という4つの連動する要素で決まり、それぞれに特有の...

メタデータとは?RAGに活用するメリット・精度向上の仕組み・注意点を徹底解説!

メタデータとは?RAGに活用するメリット・精度向上の仕組み・注意点を徹底解説!

文書にタイトルや作成日、カテゴリなどの付加情報(メタデータ)を与えることでAIは必要な情報を的確に探し出せるようになり、検索精度と回答品質が向上 RAGでメタデ...

1 2