
Agentic RAGとは?RAGとの違い・特徴・注意点・活用方法を徹底解説!
Agentic RAGは、従来のRAGを内包し、AIエージェントが自ら「計画・行動・評価・修正」のサイクルを回す CRM連携やWeb検索、API実行などを自律的...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

Agentic RAGは、従来のRAGを内包し、AIエージェントが自ら「計画・行動・評価・修正」のサイクルを回す CRM連携やWeb検索、API実行などを自律的...

RAGとLLM(生成AI)で社内に散在するマニュアルや報告書などの文書をAIが検索し、その内容を根拠として対話形式で分かりやすい回答を生成 特定の担当者しか知ら...

RAGの評価は「検索(Retrieval)」と「生成(Generation)」に分けて行う必要 評価手法の主流は、高性能なLLMを審査員として使う「LLM-as...

AIエージェントは、指示されたタスクを実行するだけでなく、ユーザーの意図を理解し自律的に行動するソフトウェアであり、日常業務の効率化に貢献 Gemini、Age...

RAG導入の成否は、事前に「定量的効果(コスト削減など)」と「定性的効果(満足度向上など)」を明確に定義できるかにかかっています 回答精度の低さやユーザーに使わ...

生成AI、特にLLMの導入が進む中、多くの企業がRAG(検索拡張生成:Retrieval-Augmented Generation)の精度に課題を抱えています。...

RAGの精度は単一の要因ではなく、「データ前処理」「埋め込みモデル」「検索アルゴリズム」「生成(プロンプト)」という4つの連動する要素で決まり、それぞれに特有の...

RAGのデータ収集は問い合わせ対応が多いFAQや属人化したノウハウなど導入効果が早く現れるROIの高いデータから優先的に着手 RAGで最大の効果を得るには、「顧...

文書にタイトルや作成日、カテゴリなどの付加情報(メタデータ)を与えることでAIは必要な情報を的確に探し出せるようになり、検索精度と回答品質が向上 RAGでメタデ...

Apps SDKは、ChatGPT上で動作するアプリを開発するための公式開発キット Model Context Protocol(MCP)を拡張して構築されたオ...