
世界モデルとLLMの違いは?定義・ベース技術・活用シーンの比較や相互補完する関係性を徹底解説!
世界モデルは物理的な因果関係を学習して未来をシミュレーションするAIであるのに対し、LLMは言語データから次に来る言葉を統計的に予測するAI 世界モデルはロボッ...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

世界モデルは物理的な因果関係を学習して未来をシミュレーションするAIであるのに対し、LLMは言語データから次に来る言葉を統計的に予測するAI 世界モデルはロボッ...

生成AI(ジェネレーティブAI)は、AI技術の中でも特に注目を集める分野です。テキスト生成(LLM)、画像生成、音声生成など、多様な形式のコンテンツを自動生成す...

画像認識は、製造業で画像判定による品質管理の自動化、小売業での在庫最適化、セキュリティ強化など、その応用範囲が拡大していますが、特にAIを活用した画像認識のビジ...

AIエージェント開発は、業務範囲の定義から知識ベースの構築、UI/UX設計、API連携、実装、運用・改善に至る体系的な手順で進められる。 開発には、LLM(大規...

AIエージェントは推論ループを行うため、API利用料(トークン消費)が指数関数的に増大するリスクがあり設計段階でのコスト制御が不可欠 初期の業務整理と技術検証を...

AIエージェントは、与えられた目標に対し、LLM等を活用して自律的に環境を認識・計画・行動するAIシステム 事前に定義されたワークフローに基づいてタスクを実行す...

AI駆動開発は開発の主役をAIエージェントへ移し、人間を「意思決定と検証」に集中させる組織変革 成功の鍵は、MCP等の標準規格を用いたコンテキスト提供の仕組み化...

プログラミングの世界は日々進化しており、より効率的で生産的な開発手法が求められています。そんな中で注目を集めているのが、生成AIを用いてプログラミングの世界に革...

AI駆動開発は、単なるコード補完から、要件を理解して自律的に動く「エージェント型」へと進化している 検証フェーズ(AutoML)、本番運用(統合プラットフォーム...

AI駆動開発ではコード行数を予測することに意味はなく、データの質に基づいた仮説検証を何回繰り返すかというサイクル数で工数を管理 完璧な設計から始めるのではなく、...