
AI開発・生成AI活用に強い企業22社!外注前の検討ポイント・最適な発注形態は?日本最大級AIコンシェルジュ厳選【2026年最新版】
これまでは、製造業における外観検査や小売業での需要予測のように特定の業務を効率化するAI活用が主流でした。しかし近年、ChatGPTを代表とする生成AI(ジェネ...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

これまでは、製造業における外観検査や小売業での需要予測のように特定の業務を効率化するAI活用が主流でした。しかし近年、ChatGPTを代表とする生成AI(ジェネ...

ChatGPTなどの生成AI導入が一巡し、多くの企業が「個人・部門単位でのツール利用」から、「全社的な業務プロセスへの組み込み」という次のフェーズへ移行しようと...

AIエージェントは単発の回答精度ではなく、ツール利用や意思決定を含むタスク完遂までのプロセスを多層的に評価する必要 無限ループによるコスト増大やセーフティ・ポリ...

AIエージェントは従来のシステムのように仕様通りに組んで終わりではなく、ゴールと制約を与え、運用を通じて挙動を改善し続ける 禁止事項や判断停止条件、人間が最終承...

AIエージェント開発は、業務範囲の定義から知識ベースの構築、UI/UX設計、API連携、実装、運用・改善に至る体系的な手順で進められる。 開発には、LLM(大規...

AIエージェントの導入は技術の問題ではなく、業務範囲と裁量権を定義し、事業利益(ROI)に直結するKPIを設定する経営判断 AIの不確実性を許容した上で、異常検...

生成AI(ジェネレーティブAI)の発展に伴い、「LLM(大規模言語モデル)」への関心が高まっています。特に、ChatGPTの急速な普及によりメディアでも非常に多...

AIエージェントは推論ループを行うため、API利用料(トークン消費)が指数関数的に増大するリスクがあり設計段階でのコスト制御が不可欠 初期の業務整理と技術検証を...

AI駆動開発は開発の主役をAIエージェントへ移し、人間を「意思決定と検証」に集中させる組織変革 成功の鍵は、MCP等の標準規格を用いたコンテキスト提供の仕組み化...

LLMに自社の開発ルールや既存コードを正しく理解させるには、RAG(検索拡張生成)を組み込んだデータパイプラインによる継続的な情報供給が不可欠 エンジニアの頭の...