
ベクトルデータベースとは?RAGの精度向上に欠かせない技術の仕組みや課題、活用ケースを徹底解説!
ベクトルデータベースはAIによる「意味の数値化(ベクトル化)」により、曖昧な指示でも文脈を理解した検索が可能 生成AIのハルシネーションや知識不足を補う外部記憶...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

ベクトルデータベースはAIによる「意味の数値化(ベクトル化)」により、曖昧な指示でも文脈を理解した検索が可能 生成AIのハルシネーションや知識不足を補う外部記憶...

RAGの価値は「作って終わり」ではなく、データの陳腐化や検索精度の悪化を防ぐ運用体制こそが要 データの品質と鮮度を保つ「ナレッジ管理の仕組み化」と、システムの劣...

従来の生成AIは、入力・データ送信・AIの学習・出力の各段階で、機密情報が意図せず漏洩するリスク RAG(検索拡張生成)は、AIに機密情報を「学習」させず、安全...

NLWebは既存のウェブサイトを、自然言語での対話が可能なAIエージェント型インターフェースへと変換するオープンソースプロジェクト RAG(検索拡張生成)システ...

RAGの回答精度は、参照するデータの品質が直接影響するため、データ前処理は「ハルシネーション」を防ぎ、検索の精度と速度を高めるための不可欠 効果的なデータ前処理...

RAG導入プロジェクトは「どの業務の何を解決したいか」という目的設定から始め、その効果を測るための具体的なKGI・KPIを設計 PoC(概念実証)を通じて、限定...

ChatGPTをはじめとするLLM(大規模言語モデル)だけでは、最新の情報、及び企業内部データを反映した正確な文章生成が困難、かつ情報セキュリティの不安がありま...

Embeddingはテキストや画像、音声などの非構造データを数値ベクトルに変換し、データの意味的関連性を保持したまま計算や分析を可能にする技術。 他のベクトル化...

生成AI(ジェネレーティブAI)の発展に伴い、「LLM(大規模言語モデル)」への関心が高まっています。特に、ChatGPTの急速な普及によりメディアでも非常に多...

プロンプトインジェクションは、LLM(大規模言語モデル)版の「SQLインジェクション」とも言えるサイバー攻撃 ユーザーが直接入力する「直接的攻撃」だけでなく、A...