最終更新日:2024-09-23
画像認識とは?種類・活用方法・企業での導入ステップ・注意点を徹底解説!
AIを活用した画像認識技術は、ビジネスの効率化と競争力強化の新たな可能性をもたらします。製造業で画像判定による品質管理の自動化、小売業での在庫最適化、セキュリティ強化など、その応用範囲は急速に拡大しています。
しかし、「導入コストが高そう」「自社に本当に必要なのか」といった懸念をお持ちの経営者も多いのではないでしょうか。実は、AI画像認識の導入は想像以上に身近なものになっています。
本記事では、
また、AI Marketでは画像認識に強いAI開発会社の無料選定・紹介を行っています。貴社に最適な会社に手間なく数日で出会えます。貴社の要望に応えることが可能な企業複数社の紹介が可能で、相見積もり・比較もすぐに実施可能。
プロのAIコンサルタントが貴社の代わりに数社選定しますので、開発会社の選定に迷ったり、相談方法がわからなかったら、
ご自分で開発会社を探したい方は「画像認識・画像解析のAI開発に強い開発会社」をご覧ください。
目次
画像認識とは?
「画像認識」は、形や色などの特徴を用いて、コンピュータが画像に写るものが何であるかを認識する技術です。人間が「犬」「猫」「車」などの物体の特徴を学び認識する能力を模倣し、機械による認識能力の獲得を目指します。
従来は機械による画像認識の精度向上は困難とされ、画像上の似た特徴を持つ生物、例えば猫と犬を正確に識別することは難しい課題でした。しかし、AI(特にディープラーニング技術)と組み合わせることで、その認識精度は大幅に向上しました。
現在では、画像認識技術は様々な場面で活用されています。スマートフォンの顔認証システムで顔を特定すること、自動車の自動運転システムで道路上の物体を検知すること、製造ラインでの異常検知システム(外観検査)による不良品の発見など、幅広い産業でその効果を発揮しています。
私たち人間が物体を認識する能力は、成長の過程で自然に発展します。それと同様に、画像認識技術も未知の画像を正確に認識する能力を持つように進化しています。これらの進歩により、日々の生活や業務の中で、機械による画像認識の活用がますます重要となってきています。
AIで画像認識ができる?
AIにおける画像認識とは、特定の画像に対してAIが何を映っているのかを判断する技術です。深層学習(ディープラーニング)を用いて、AIに何度も似たような画像を読み取らせることで、特徴を判断し、画像認識を可能にしています。
ディープラーニングのなかでも、特にCNN(畳み込みニューラルネットワーク)は、画像のピクセルデータをそのまま利用し、人間が手動で特徴を選択することなく、自動的に画像の特徴を学習します。
CNNでは「畳み込み」という操作を行い、画像の一部分にフィルターを適用して画像の特徴を抽出します。この操作を繰り返すことで、画像全体の特徴を理解することが可能になります。
こちらの記事で、CNN(畳み込みニューラルネットワーク)の仕組みについて解説しています。
また、特に画質の劣化した画像を高画質にする「超解像」技術には、GAN(敵対的生成ネットワーク)という手法が用いられます。
AIに人間と同じく経験を蓄積させることで、高い精度の画像認識が可能となり、応用することによりさまざまなシーンで活用されています。
2023年以降、ChatGPTやGeminiのようなマルチモーダル化したLLMを活用してこれまでよりもより簡単に画像認識を行う、ということもできるようになってきています。
AI画像認識の具体的な活用方法
AI画像認識の具体的な活用方法は以下の通りです。
- 設備劣化の判定
- 不良品の検知(外観検査)
- 地図データによる横断報道の検出
- 需要に応じた最適な在庫管理
- バーチャルヒューマン
- 生体認証
- 非破壊検査(水道管やガス管などの異常検知)
もちろん上記以外にも多くの活用方法があります。
こちらでAI画像認識の活用事例をさらに多く取り上げて詳しく説明しています。
画像認識の種類
AI画像認識の種類には、以下のようなものがあります。
- 画像分類
- 物体検出
- セグメンテーション(領域検出)
- 異常検知
- 画像キャプション生成
- 顔認証
- 文字認識(OCR)
それぞれの特徴について、詳しく解説します。
画像分類
画像分類は画像内の個々の物体を単独で認識するだけでなく、その全体的な「環境」や「状況」を理解することを目指します。シーン認識は、画像中の複数の物体やその関連性から、特定の環境が存在することを推定します。
例えば、ある画像に「多くの計器」、「左右に座る制服姿の男女」、「空の背景」などが写っているとします。それぞれの物体を単独で認識するだけではなく、これらの物体の存在と相互関係性を考慮すると、これらが一般的に「飛行機の操縦室」で見られる要素であると結論付けることができます。これが画像認識の基本的な原理です。
このような技術は、例えば、視覚支援技術やロボット工学、自動運転車などにおいて重要な役割を果たします。視覚支援技術では、視覚障害者が現在どのような場所にいるのかを理解するために用いられます。
ロボット工学では、ロボットが周囲の環境を把握し、適切な行動を選択するために利用されます。自動運転車では、車が現在どのような道路状況にあるのかを理解し、適切な運転行動を取るために用いられます。
他にも、食品工場において食品の品質を判断してグレードを分類したり、農作物の収穫において農作物の熟度を分類したりすることなどもできます。
物体検出
物体検出は、物体認識と共に、画像内の特定の物体の位置を特定する技術です。個々の物体が画像内のどこに存在するかを矩形領域(バウンディングボックス)を用いて検出します。
例えば、セキュリティカメラの映像から人物を特定し、その位置と動きを追跡することで、異常行動の検出やカウントなどに用いられます。
また、店舗のカメラを活用して、商品がいくつ売れ残っているか、レジを通った商品がなにか、のように、画像の中の個々の物体を識別することができます。
こちらでAIの物体検出の概要、CNNなど機械学習による画像認識について詳しく説明しています。
セグメンテーション(領域検出)
セグメンテーションは、画像中の各ピクセルがどの物体または背景に属するかを分類する技術です。これは、個々の物体の境界をより詳細に理解することが可能で、例えば医療画像解析で、病変部位の正確な形状や大きさを把握するために使われます。
また、自動運転車では、道路上の物体と背景を分離し、運転環境をより正確に理解するために用いられます。
セグメンテーションには、「セマンティックセグメンテーション」と呼ばれる同種の物体を同じグループとして識別するもの(例えば1画像に複数の自動車が写っていても同じグループ)と、「インスタンスセグメンテーション」と呼ばれる同種の物体でも個々の物体を違うものとして扱う(例えば1画像に複数の自動車が写っていたらそれぞれ別の物体として捉える)ものなどもあります。
こちらでセグメンテーションの代表的手法であるセマンティックセグメンテーションの仕組みを詳しく説明しています。
異常検知
画像認識の中でも特に活用が進んでいるのが異常検知です。この技術は、データのパターンを学習し、そのパターンからの逸脱を見つけ出します。
例えば、製造ラインでの品質管理では、異常検知は製品の欠陥を検出するために使用されます。具体的には、従来目視検査で製造した製品の異常を判定していたのに対し、AIを活用することで、製品が正常品と比較して傷が付いていないか、などを画像を用いて判定・判別します。
また医療分野では、CTスキャンやMRIなどの医療画像から異常な細胞や組織を検出するなどでも用いられています。
こちらで異常検知とは何か、機械学習がどのように活用されているか詳しく説明しています。
姿勢推定
主に人物の画像から骨格・関節の位置(キーポイント)を特定し、画像に写っている人物がどのようなポーズを取っているのかを識別します。
この技術を用いて、例えばプロスポーツ選手の動きが解析して最適な動きを分析したり、工場で働くスタッフが効率的な動きを行っているかを確認をしたり、車を運転しているドライバーが異常な行動を取っていないかなどを検知したりすることができます。
画像キャプション生成
画像キャプション生成とは、画像を説明する文章を自動的に生成する技術です。画像に写る物体を認識し、その状態や行動を説明する文章を生成します。
例えば、視覚障害者を支援するアプリでは、写真を撮るだけでその中に何が含まれているかを音声で説明してくれます。SNSなどでは、自動生成されたキャプションを利用して、画像を検索したり、内容を理解したりすることが可能になります。
自然言語処理と連携して、逆に文章から画像や動画を生成するAI技術の実用化も進んでいます。画像に関する質問に答えるVisual Question Answering(VQA)、テキストから画像を生成するText-to-Image Generationなどの応用が可能になります。これらの技術は、画像とテキストの相互理解を深め、より人間に近いコミュニケーションを実現します。
こちらでAIによる画像生成技術の基礎知識・活用方法を詳しく説明しています。
顔認証
顔認証は人間の顔を識別する技術で、一人一人の顔の特徴を把握し、それを用いて個々の人を特定します。セキュリティシステムでは、顔認証を利用して許可された人のみがエントリーできるようにします。
また、スマートフォンでは、顔認証を用いてユーザーの認証を行います。
関連記事:「顔認証システムとは?どんな仕組み?導入手順・注意点・ディープフェイク対策を徹底解説!」
文字認識(OCR)
文字認識とは、印刷された文字や手書きの文字を識別する技術です。文字認識技術の代表的な技術としてOCR(Optical Character Recognition)があり、スキャンされた文書や写真に含まれる文字をデジタルテキストに変換します。
このOCR技術にAIが加わり、AI-OCRとして従来のOCRよりも文字認識精度が格段に上がっています。
AI-OCRは、データの自動入力、郵便物の仕分け、チェックの読み取りなど、幅広い場面で使用されています。画像認識と自然言語処理を組み合わせることで、画像に関する質問に答えるVisual Question Answering(VQA)、テキストから画像を生成するText-to-Image Generationなどの応用が可能になります。これらの技術は、画像とテキストの相互理解を深め、より人間に近いコミュニケーションを実現します。
また、生成AIの登場により、AI-OCRの活用用途が大きく広がっています。AI-OCRは一般的に文字を認識するだけでその文字の意味を捉えることはありません。ただし生成AIと連携することで、例えば、領収書や請求書などの文字認識はAI-OCRが行い、その項目分類(2024/11/15と書いてあれば日付と認識する等)を生成AIが行う、といった連携を行うことで、これまでよりも精度高く文字情報のテキスト化を行えるようになりました。
関連記事:「AI-OCRを徹底理解!AI-OCR活用のメリット」
AI Marketでは画像認識に強いAI開発会社の無料選定・紹介を行っています。貴社に最適な会社に手間なく数日で出会えます。貴社の要望に応えることが可能な企業複数社の紹介が可能で、相見積もり・比較もすぐに実施可能。
プロのAIコンサルタントが貴社の代わりに数社選定しますので、開発会社の選定に迷ったり、相談方法がわからなかったら、
AIを使う画像認識を導入する手順
画像認識モデル導入の基本的なステップは以下です。
- 導入する目的と必要な精度を明確にする
- データ収集
- データの加工
- ディープラーニングモデルの定義
- 実装・検証
- 再学習
最近主流になっているディープラーニングを活用した画像認識で説明しています。それぞれのステップは、目的とする認識タスクによって細部は異なる可能性がありますが、基本的な流れは共通しています。
この一連の流れを理解し、適切に実行することで、高性能な画像認識モデルの導入が可能となります。
それぞれのステップについて説明します。
導入する目的と必要な精度を明確にする
画像認識モデルの導入を計画する最初のステップは、その目的と必要な認識精度を明確にすることです。
自動運転や医療画像診断など人命に関わる目的であれば、高い精度が求められます。逆に、一部の書類の文字認識などに用いる場合は、ある程度の精度が担保されていれば、コストを抑える方向性もあります。
導入目的によって必要な精度は変動するため、この段階で具体的な目標を設定することが重要です。
データ収集
画像認識モデルの学習を行うには、大量の画像データの収集が必須となります。このデータはモデルが世界を理解するための基盤となります。
データの収集方法は主に以下の2つに分かれます。
- 公開データセットの利用:CIFAR-10、ImageNet、COCO等の既存のデータセットを活用
- 独自データの収集:自社製品や特定の対象物の画像を収集
ただし、ただ多くのデータを集めるだけではなく、「質」も重要です。集めた画像データが偏りがあったり、目的とするタスクに適していないと、学習したモデルの性能が低下します。
関連記事:「AI学習用のデータ収集代行会社プロ厳選おすすめ」
データの加工
画像データの前処理は、モデルの学習効率と精度向上に重要です。以下のような処理を行います:
- リサイズ:すべての画像を同じサイズにリサイズ
- 正規化:ピクセル値を0-1の範囲に正規化
- データ拡張:回転、反転、ズーム等の変換を適用
ディープラーニングモデルの定義
データ収集と加工が終わったら、次にディープラーニングモデルの定義を行います。使用するフレームワーク(例えば、TensorflowやKerasなど)により、畳み込みニューラルネットワーク(CNN)などのモデルを設計し、学習データを利用してモデルの学習と評価を行います。
Pythonを使用したAI画像認識
AIによる画像認識の導入でよく用いられるプログラミング言語としてPythonがあります。Pythonの特徴としては、簡潔なコードでプログラムを書けることや、豊富なライブラリが存在することが挙げられます。これにより、Pythonは多くの開発者にとって書きやすく、また読みやすいプログラミング言語となっています。
画像認識のために必要なデータの前処理、特徴抽出、モデルの訓練と評価などの一連の流れを、Pythonの各種ライブラリを活用して比較的簡単に実現できます。例えば、OpenCVやPillowで画像の読み込みや前処理を行い、scikit-learnやTensorFlow、Kerasを用いて画像認識のためのモデルを構築・訓練可能です。
Pythonには、CNNやGANといった高度な画像認識手法をサポートするライブラリも含まれており、これによりディープラーニングを用いた画像認識が容易になります。
Pythonにも対応しているAWSのAmazon Rekognitionを用いた画像認識の始め方をこちらの記事で詳しく説明していますので併せてご覧ください。
実装・検証
モデルの学習が完了したら、実際にそれを使用して画像認識を試みます。画像データを学習用とテスト用に分け、テスト用データを用いてモデルの性能を検証します。
その結果を基に、モデルの改善点を明らかにし、必要に応じて調整を行います。
- テストデータでの評価:精度、適合率、再現率等の指標を確認
- 過学習の確認:訓練データと検証データでの性能比較
- ハイパーパラメータの調整:学習率、バッチサイズ、層の数等を最適化
- モデルのファインチューニング:転移学習を適用し、特定のタスクに適応
再学習
モデルの評価と調整を行った後は、再度学習を行い、その結果を元にモデルを改善していきます。このプロセスを繰り返すことで、徐々にモデルの性能を向上させていくことが可能になります。
AI画像認識を活用する際の8つの注意点
AI画像認識を活用する際の注意点は以下です。
注意点 | 概要説明 |
---|---|
データの量とクオリティ | 高精度な認識には大量の画像データ(数十万〜数百万点)が必要。データのクレンジングも重要だが、時間とコストがかかる。 |
撮影環境の整備 | カメラの質や設置位置が重要。適切な撮影環境を整えないと、精度が低下する可能性がある。 |
情報セキュリティとプライバシー | 個人情報保護や肖像権に配慮が必要。適切なセキュリティ対策が求められる。 |
機能の適切な選択 | 自社ビジネスに必要な機能を把握し、適切なAI画像認識を選択することが重要。 |
学習期間の確保 | 1,000〜10,000枚以上の画像で初期学習を行い、継続的な学習とアップデートが必要。 |
誤認識の可能性 | 完全に誤認識を排除することは難しく、対策が必要。 |
ブラックボックス問題 | AIの判断根拠が不明確な場合、結果の信頼性が問われる。説明可能AIの開発が進んでいる。 |
破滅的忘却 | 新たなデータ学習時に以前の学習内容を忘れる現象。対策には時間とコストがかかる。 |
バイアスの問題 | 学習データや設計者のバイアスにより、AIの判断に偏見や差別が含まれる可能性がある。 |
説明可能性の確保 | AIの判断プロセスを人間が理解・説明できるようにする必要がある。 |
プライバシー侵害のリスク | 個人情報の目的外利用や漏洩のリスクがあり、適切な管理が必要。エッジAIの活用も検討される。 |
注意点を踏まえて、画像認識においてAIが得意とすること、不得意とすること、現状の課題に対する解決策をこちらの記事で解説しています。
AI Marketでは画像認識に強いAI開発会社の無料選定・紹介を行っています。貴社に最適な会社に手間なく数日で出会えます。貴社の要望に応えることが可能な企業複数社の紹介が可能で、相見積もり・比較もすぐに実施可能。
プロのAIコンサルタントが貴社の代わりに数社選定しますので、開発会社の選定に迷ったり、相談方法がわからなかったら、
最新の画像認識技術動向
画像認識の精度と適用範囲を大きく広げる可能性を秘めている技術を紹介します。また、自然言語処理など他のAI分野との融合により、マルチモーダルな理解も可能になるでしょう。
一方で、実世界への応用には、データの収集や annotation、モデルの解釈性など、まだ多くの課題が残されています。今後のさらなる研究と発展が期待されます。
画像認識はマルチモーダルでどう変わる?
マルチモーダルAIの発展により、画像認識AIは、画像だけでなく異種データの統合による高度な理解が可能になります。画像、テキスト、音声など様々なモダリティを組み合わせることで、人間に近い知覚・認知能力を持つAIの実現が期待されます。今後、画像認識技術はさらに他のAI分野と融合し、新たな応用分野を切り開いていくでしょう。
画像認識と音声処理を融合することで、音声と口の動きから発話を認識するAudio-Visual Speech Recognition(AVSR)、画像と音声から音源位置を特定するSound Source Localization(SSL)、音声から話者の顔の動きを生成するTalking Face Generationなどの応用が可能になります。これらの技術は、マルチモーダルな情報処理により、より自然なインタラクションを実現します。
関連記事:「AIによる音声認識の仕組みとは?何ができる?技術や企業の活用事例を徹底解説!」
画像認識とロボティクスの融合
画像認識技術は、ロボティクスの分野でも欠かせない要素です。物体認識を用いたロボットマニピュレーション、環境理解に基づくロボットナビゲーション、人とロボットのインタラクションにおける視覚情報の活用など、画像認識はロボットの知覚・認知能力の向上に大きく貢献します。
Vision Transformer (ViT)
Vision Transformer (ViT) は、自然言語処理で大きな成功を収めた Transformer アーキテクチャを画像認識に適用したモデルです。2021年にGoogleから発表されました。
ViTは、画像をパッチに分割し、それらをシーケンスとして処理することで、CNNとは異なる方法で画像の特徴を捉えます。ViTの登場により、画像認識の精度が大きく向上し、様々な応用が期待されています。
関連記事:「Transformerとは?何がすごい?ChatGPTのベースにもなった深層学習モデルを詳しく解説」
Few-shot Learning
Few-shot Learning は、少量のデータから効果的に学習するための手法です。従来の機械学習では大量のデータを必要としましたが、Few-shot Learning ではメタ学習の考え方を取り入れ、わずかな例から新しいクラスを認識できるようにします。
この手法を用いることで、データが少ない場合でも高精度な画像認識が可能になります。
関連記事:「Few Shot Learning入門:ファインチューニングとの違いは?どんな分野で使う?失敗しない注意点を解説」
Zero-shot Learning
Zero-shot Learning は、学習時に一度も見たことがないクラスを認識する手法です。属性情報や言語情報を利用して、未知のクラスに対する認識能力を獲得します。
例えば、「黄色くて長い」という属性情報から「バナナ」を認識するような場合に用いられます。Zero-shot Learning により、画像認識の適用範囲が大きく広がることが期待されます。
Zero-shot Learningの仕組み、活用事例をこちらの記事で詳しく説明していますので併せてご覧ください。
Self-supervised Learning
Self-supervised Learning は、教師なしで特徴表現を学習する手法です。画像の一部を隠して復元させたり、画像の変換に対して不変な特徴を学習させたりすることで、ラベルのない大量の画像データから汎用的な特徴表現を獲得します。
事前学習モデルを用いることで、少量のデータでも高精度な画像認識が可能になります。
画像認識についてよくある質問まとめ
- 画像認識とは?
「画像認識」は、形や色などの特徴を用いて、コンピュータが画像に写るものが何であるかを認識する技術です。スマートフォンの顔認証システムで顔を特定すること、自動車の自動運転システムで道路上の物体を検知すること、製造ラインでの異常検知システムによる不良品の発見など、幅広い産業でその効果を発揮しています。
- AI画像認識を導入することで、どのように競合他社と差別化を図れますか?
AI画像認識の戦略的導入により、以下のような差別化が可能です:
- 業務効率の飛躍的向上 • リアルタイムの品質管理による製品品質の向上 • 需要予測精度の向上による在庫最適化
- カスタマーエクスペリエンスの革新 • パーソナライズされた商品レコメンデーション • VR/ARを活用した新しい購買体験の提供
- 新規ビジネスモデルの創出 • 画像データを活用した新サービスの開発 • 予測保守サービスの提供による収益源の多様化
- コンプライアンスと安全性の強化 • 高精度な不正検知システムの構築 • 作業現場の安全性向上
- AI画像認識の導入プロセスはどのようなものですか?社内にAI専門家がいない場合でも導入は可能でしょうか?
AI画像認識の一般的な導入プロセスは以下の通りです:
- ビジネス課題の特定と目標設定
- データの収集と前処理
- AI モデルの選択または開発
- システム統合とテスト
- 社内トレーニングと運用開始
- 継続的な監視と改善
社内にAI専門家がいなくても、以下のアプローチで導入が可能です:
- クラウドAIサービス(AWS Rekognition, Google Cloud Vision等)の活用
- AIベンダーやコンサルティング企業とのパートナーシップ
- 段階的な導入とスキル育成の並行実施
AI画像認識を導入する際は専門会社へ
画像認識AIは、技術の進化とともに私たちの生活をより豊かで便利なものに変えていく可能性を秘めています。しかし、その実現には技術的な課題だけでなく、倫理的・社会的な課題にも取り組む必要があります。
私たちは、この革新的な技術の恩恵を最大限に活かしつつ、responsible AIの原則に基づいた開発と利用を心がけていくことが重要です。画像認識AIの未来は、技術者だけでなく、私たち一人一人の関わり方によって形作られていくのです。
AI Marketでは画像認識に強いAI開発会社の無料選定・紹介を行っています。貴社に最適な会社に手間なく数日で出会えます。貴社の要望に応えることが可能な企業複数社の紹介が可能で、相見積もり・比較もすぐに実施可能。
プロのAIコンサルタントが貴社の代わりに数社選定しますので、開発会社の選定に迷ったり、相談方法がわからなかったら、
また、画像認識・画像解析のAI開発に強い!プロ厳選の開発会社紹介記事では、AI開発会社の中から、画像認識・画像解析に強い会社を厳選して紹介していますので、こちらもぜひご参考ください。
AI Marketの編集部です。AI Market編集部は、AI Marketへ寄せられた累計1,000件を超えるAI導入相談実績を活かし、AI(人工知能)、生成AIに関する技術や、製品・サービス、業界事例などの紹介記事を提供しています。AI開発、生成AI導入における会社選定にお困りの方は、ぜひご相談ください。ご相談はこちら
𝕏:@AIMarket_jp
Youtube:@aimarket_channel
TikTok:@aimarket_jp
運営会社:BizTech株式会社
掲載記事に関するご意見・ご相談はこちら:ai-market-contents@biz-t.jp