
RAGのデータ前処理はなぜ重要?精度低迷の原因となるリスク・実施方法5ステップを徹底解説!
RAGの回答精度は、参照するデータの品質が直接影響するため、データ前処理は「ハルシネーション」を防ぎ、検索の精度と速度を高めるための不可欠 効果的なデータ前処理...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

RAGの回答精度は、参照するデータの品質が直接影響するため、データ前処理は「ハルシネーション」を防ぎ、検索の精度と速度を高めるための不可欠 効果的なデータ前処理...

生成AIは、膨大なログ解析や未知の脅威検知を自動化・高速化し、誤検知を減らします 高度な分析やインシデント対応の優先順位付け(トリアージ)をAIが支援するため、...

プロンプトインジェクションは、LLM(大規模言語モデル)版の「SQLインジェクション」とも言えるサイバー攻撃 ユーザーが直接入力する「直接的攻撃」だけでなく、A...

ヘルプデスクやカスタマーサポート部門では、問い合わせ対応の遅延、担当者の疲弊、属人化など様々な問題が起きています。システムを活用して解決しようとしても、一般的な...

多くの企業で、情報が部署やツールごとに「サイロ化」し多様なデータ形式が混在しているため、従来のキーワード検索では必要な情報にたどり着くのが困難 LLMとRAGを...

ChatGPTのジェイルブレイクは、特殊なプロンプトでAIの安全機能を回避する攻撃手法 機密情報の漏洩、誤情報(ハルシネーション)の増加、法的・倫理的に問題のあ...

RAGは検索した情報を基に回答するため、投入するデータが不正確・古い・不十分だとLLMの性能に関わらず出力の質が低下し、ハルシネーションの原因に 情報の「正確性...

RAG導入の成否は、事前に「定量的効果(コスト削減など)」と「定性的効果(満足度向上など)」を明確に定義できるかにかかっています 回答精度の低さやユーザーに使わ...

生成AI、特にLLMの導入が進む中、多くの企業がRAG(検索拡張生成:Retrieval-Augmented Generation)の精度に課題を抱えています。...

RAGの精度は単一の要因ではなく、「データ前処理」「埋め込みモデル」「検索アルゴリズム」「生成(プロンプト)」という4つの連動する要素で決まり、それぞれに特有の...