生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

記事一覧

ハルシネーションの記事一覧

RAGはデータ選定が最重要?理由・選定の注意点7ポイント・手順を徹底解説!

RAGはデータ選定が最重要?理由・選定の注意点7ポイント・手順を徹底解説!

RAGは検索した情報を基に回答するため、投入するデータが不正確・古い・不十分だとLLMの性能に関わらず出力の質が低下し、ハルシネーションの原因に 情報の「正確性...

営業部門でAIエージェントは使える?機能・代表的なサービス・活用企業事例・導入注意点を徹底解説!

営業部門でAIエージェントは使える?機能・代表的なサービス・活用企業事例・導入注意点を徹底解説!

AIエージェントは、データに基づき自ら状況を判断し、非定型業務にも対応する「営業担当者の思考を補完するパートナー」 リード獲得から提案資料作成、商談後のフォロー...

RAG導入の費用対効果を上げるには?原因・精度改善の重要性・手順・KPI例を徹底解説!

RAG導入の費用対効果を上げるには?原因・精度改善の重要性・手順・KPI例を徹底解説!

RAG導入の成否は、事前に「定量的効果(コスト削減など)」と「定性的効果(満足度向上など)」を明確に定義できるかにかかっています 回答精度の低さやユーザーに使わ...

RAGの精度を向上させる方法は?チャンキングなど手法や落ちる原因、低精度で運用するリスクを徹底解説!

RAGの精度を向上させる方法は?チャンキングなど手法や落ちる原因、低精度で運用するリスクを徹底解説!

生成AI、特にLLMの導入が進む中、多くの企業がRAG(検索拡張生成:Retrieval-Augmented Generation)の精度に課題を抱えています。...

RAGのチューニングはなぜ必要?精度を下げない戦略・具体的検討方法を徹底解説!

RAGのチューニングはなぜ必要?精度を下げない戦略・具体的検討方法を徹底解説!

RAGの精度は単一の要因ではなく、「データ前処理」「埋め込みモデル」「検索アルゴリズム」「生成(プロンプト)」という4つの連動する要素で決まり、それぞれに特有の...

RAGのデータ収集を成功させる方法は?目的別の考え方・コツ・ツール・外部データ収集手段を徹底解説!

RAGのデータ収集を成功させる方法は?目的別の考え方・コツ・ツール・外部データ収集手段を徹底解説!

RAGのデータ収集は問い合わせ対応が多いFAQや属人化したノウハウなど導入効果が早く現れるROIの高いデータから優先的に着手 RAGで最大の効果を得るには、「顧...

メタデータとは?RAGに活用するメリット・精度向上の仕組み・注意点を徹底解説!

メタデータとは?RAGに活用するメリット・精度向上の仕組み・注意点を徹底解説!

文書にタイトルや作成日、カテゴリなどの付加情報(メタデータ)を与えることでAIは必要な情報を的確に探し出せるようになり、検索精度と回答品質が向上 RAGでメタデ...

LLM(大規模言語モデル)の性能評価方法とは?指標設定方法・改善サイクル・注意点までLLMOpsサイクルを徹底解説!

LLM(大規模言語モデル)の性能評価方法とは?指標設定方法・改善サイクル・注意点までLLMOpsサイクルを徹底解説!

LLMの性能は、公開ベンチマークの数値だけでなく、「定量」「定性」「AIによる評価」という3つの異なる視点を組み合わせて多角的に評価 自社の活用シーン(ユースケ...

LLM導入での評価指標(KPI)種類は?生成AIを最大活用できる選び方・設定の落とし穴を徹底解説!

LLM導入での評価指標(KPI)種類は?生成AIを最大活用できる選び方・設定の落とし穴を徹底解説!

LLMの評価は応答速度や精度などの技術的指標だけでなく、「ROI」や「顧客満足度」といったビジネスインパクト、「ユーザーの使いやすさ」など複数の視点 LLMを「...

AIのハルシネーションとは?原因は?リスクを抑える4つの方法を徹底解説!

生成AI、LLMのハルシネーションとは?原因は?リスクを抑える5つの方法を徹底解説!

生成AI、特にLLM(大規模言語モデル)の活用で頻繁に耳にするハルシネーション(幻覚)とは、AIがもっともらしい(まるで正しいかのような)嘘を生成する自称を指し...

1 2 3 4