
ChatGPTでRAGを活用する方法は?課題や実装方法、活用事例、注意点を徹底解説!
多くの企業がChatGPTの活用を進める中で、機密情報の取り扱いやハルシネーションといった課題に直面しています。特に、顧客情報や社内の機密データを扱う部門では、...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

多くの企業がChatGPTの活用を進める中で、機密情報の取り扱いやハルシネーションといった課題に直面しています。特に、顧客情報や社内の機密データを扱う部門では、...

ベクトルデータベースはAIによる「意味の数値化(ベクトル化)」により、曖昧な指示でも文脈を理解した検索が可能 生成AIのハルシネーションや知識不足を補う外部記憶...

RAGの価値は「作って終わり」ではなく、データの陳腐化や検索精度の悪化を防ぐ運用体制こそが要 データの品質と鮮度を保つ「ナレッジ管理の仕組み化」と、システムの劣...

NLWebは既存のウェブサイトを、自然言語での対話が可能なAIエージェント型インターフェースへと変換するオープンソースプロジェクト RAG(検索拡張生成)システ...

RAGの回答精度は、参照するデータの品質が直接影響するため、データ前処理は「ハルシネーション」を防ぎ、検索の精度と速度を高めるための不可欠 効果的なデータ前処理...

RAG導入プロジェクトは「どの業務の何を解決したいか」という目的設定から始め、その効果を測るための具体的なKGI・KPIを設計 PoC(概念実証)を通じて、限定...

RAGの評価は「検索(Retrieval)」と「生成(Generation)」に分けて行う必要 評価手法の主流は、高性能なLLMを審査員として使う「LLM-as...

RAG導入の成否は、事前に「定量的効果(コスト削減など)」と「定性的効果(満足度向上など)」を明確に定義できるかにかかっています 回答精度の低さやユーザーに使わ...

RAGの精度は単一の要因ではなく、「データ前処理」「埋め込みモデル」「検索アルゴリズム」「生成(プロンプト)」という4つの連動する要素で決まり、それぞれに特有の...

文書にタイトルや作成日、カテゴリなどの付加情報(メタデータ)を与えることでAIは必要な情報を的確に探し出せるようになり、検索精度と回答品質が向上 RAGでメタデ...