
知識蒸留(Knowledge Distillation)とは?メリット・実装方法・選択ポイントを徹底解説!
大規模なAIモデルの導入は、高精度な業務自動化を可能にする一方で、運用コストやリソースの制約が課題となることがあります。知識蒸留(Knowledge Disti...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

大規模なAIモデルの導入は、高精度な業務自動化を可能にする一方で、運用コストやリソースの制約が課題となることがあります。知識蒸留(Knowledge Disti...

AI業界では汎用性を追求した技術開発が進んでいますが、LLM(大規模言語モデル)の開発には膨大なコストがかかるため、実際に開発できる企業は限られるのが現状です。...

近年、AI(人工知能)や機械学習の分野で注目を集めている革新的な手法の一つに、「Zero Shot Learning(ゼロショット学習)」があります。Zero ...

近年、機械学習の分野では、大量のデータを必要とする従来の学習方法から、より少ないデータで効率的に学習を進めるFew Shot Learning(フューショット学...

AIモデルにおいて、予測精度は品質を左右する指標です。学習したデータにない情報が提示された際に、AIが正確な予測ができるかどうかが重要なポイントとなっており、A...

目覚ましい技術発展を続けるAI。将来的には汎用人工知能(AGI)が誕生するともされていますが、現状においてAIにはフレーム問題という課題が存在しています。 AI...

多くの企業でAI導入のハードルとして、大量の学習データを収集するコストと将来の環境変化への懸念という課題を挙げられるケースが多いようです。メタ学習は、これらの課...

多くの企業がAI活用への一歩を踏み出せない背景には、データ収集と開発リソースの課題があります。AIの導入は検討したいが十分なデータがない、開発には時間もコストも...

様々な状況で社会への実装が進められているAI(人工知能)。その重要な機能の核となり、注目をされているのが機械学習(マシンラーニング)です。この機械学習というAI...

AI(人工知能)とともに頻繁に使われる用語に「機械学習」や「ディープラーニング」があります。AIのビジネスへの活用が広まっており、自社でも業務の効率化や生産性の...