
なぜRAGの評価は難しい?評価手法・重要フレームワーク・生成AIの精度を上げる改善方法を徹底解説!
RAGの評価は「検索(Retrieval)」と「生成(Generation)」に分けて行う必要 評価手法の主流は、高性能なLLMを審査員として使う「LLM-as...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

RAGの評価は「検索(Retrieval)」と「生成(Generation)」に分けて行う必要 評価手法の主流は、高性能なLLMを審査員として使う「LLM-as...

RAGの精度は単一の要因ではなく、「データ前処理」「埋め込みモデル」「検索アルゴリズム」「生成(プロンプト)」という4つの連動する要素で決まり、それぞれに特有の...

RAGのデータ収集は問い合わせ対応が多いFAQや属人化したノウハウなど導入効果が早く現れるROIの高いデータから優先的に着手 RAGで最大の効果を得るには、「顧...

文書にタイトルや作成日、カテゴリなどの付加情報(メタデータ)を与えることでAIは必要な情報を的確に探し出せるようになり、検索精度と回答品質が向上 RAGでメタデ...

RAGの回答精度は、参照するデータの品質が直接影響するため、データ前処理は「ハルシネーション」を防ぎ、検索の精度と速度を高めるための不可欠 効果的なデータ前処理...

多くの企業がLLM活用におけるRAGの導入過程で、大量のテキストデータの効率的な処理に課題を抱えています。不適切なデータ分割は検索精度の低下や処理効率の悪化を招...