
AgentOpsとは?LLMOps・MLOpsとの関係・機能とメリット、代表的ツールを徹底解説!
AIエージェントは自律的に判断・実行を繰り返すため、推論のプロセスを可視化するAgentOpsが実務運用の成否を分ける 従来のLLM管理に加え、ツールの使用状況...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

AIエージェントは自律的に判断・実行を繰り返すため、推論のプロセスを可視化するAgentOpsが実務運用の成否を分ける 従来のLLM管理に加え、ツールの使用状況...

LLMに自社の開発ルールや既存コードを正しく理解させるには、RAG(検索拡張生成)を組み込んだデータパイプラインによる継続的な情報供給が不可欠 エンジニアの頭の...

LLM(大規模言語モデル)が急速な進歩を遂げる中で、LLMを活用したシステムの導入に取り組む企業も増えています。しかし、LLMの真価を発揮させるには、開発から運...

機械学習やAIの活用に注目が集まる中、モデルの開発・運用の効率化を図る「MLOps」というアプローチが脚光を浴びていますAI導入プロジェクトの成功を目指す企業に...

LLMの性能は、公開ベンチマークの数値だけでなく、「定量」「定性」「AIによる評価」という3つの異なる視点を組み合わせて多角的に評価 自社の活用シーン(ユースケ...

AIトランスフォーメーション(AX)は単なるツール導入ではなく、ナレッジ検索(RAG)や需要予測など、データ起点で既存業務プロセスを再構築 非構造化データの整備...

RAG導入プロジェクトは「どの業務の何を解決したいか」という目的設定から始め、その効果を測るための具体的なKGI・KPIを設計 PoC(概念実証)を通じて、限定...

LLMをビジネスで活用する際、自動評価では測れない「品質」を担保するために人による評価が不可欠 評価の目的を明確にし、正確性や一貫性といった評価項目、5段階など...

LLM導入の投資対効果(ROI)を測るにはAPI利用料や開発費といった直接コストだけでなく運用保守やデータ準備などの「隠れコスト」も投資(I)に含める リターン...

DifyはApache License 2.0に基づき、社内利用から有料サービスの開発まで原則として商用利用が可能 「マルチテナント型SaaSの提供」と「ロゴ・...