生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

記事一覧

プロンプトエンジニアリングの記事一覧

AI駆動開発に必要な人材とは?考え方や活用ポイント、内製化・外注すべき領域を徹底解説!

AI駆動開発に必要な人材とは?考え方や活用ポイント、内製化・外注すべき領域を徹底解説!

PM、オーケストレーター、データエンジニアが連携する「チーム設計」こそが重要 エンジニアの役割は「書くこと」から「ビジネス要件をAIに正しく伝え、成果物を厳格に...

AI駆動開発特有のセキュリティリスクと基本対策を徹底解説!リスクマネジメントの方法は?

AI駆動開発特有のセキュリティリスクと基本対策を徹底解説!リスクマネジメントの方法は?

従来のインフラ・アプリ保護に加え、「学習データ(汚染)」「モデル(盗難・解析)」「判断ロジック(敵対的サンプル)」という3つの新領域を守る設計 AIは脆弱なコー...

AIエージェントにコンサルティングは必要?理由・サービス例・見極め方を徹底解説!

AIエージェントにコンサルティングは必要?理由・サービス例・見極め方を徹底解説!

AIエージェントは自律的に推論と実行を繰り返すため、技術的な複雑さだけでなく、意思決定の範囲といったガバナンス設計が不可欠 既存業務を単にAIへ置き換えるのでは...

AIエージェント導入の費用を徹底解説!内訳・隠れコスト・最適化の工夫ポイントまで

AIエージェント導入の費用を徹底解説!内訳・隠れコスト・最適化の工夫ポイントまで

AIエージェントは推論ループを行うため、API利用料(トークン消費)が指数関数的に増大するリスクがあり設計段階でのコスト制御が不可欠 初期の業務整理と技術検証を...

AIエージェントと従来システムの導入プロセスの違いは?検討ポイント・よくある失敗例・対策方法を徹底解説!

AIエージェントと従来システムの導入プロセスの違いは?検討ポイント・よくある失敗例・対策方法を徹底解説!

AIエージェントは従来のシステムのように仕様通りに組んで終わりではなく、ゴールと制約を与え、運用を通じて挙動を改善し続ける 禁止事項や判断停止条件、人間が最終承...

AIエージェントのセキュリティはなぜ難しい?主なリスク事例・対策を徹底解説!

AIエージェントのセキュリティはなぜ難しい?主なリスク事例・対策を徹底解説!

AIエージェントはAPI連携等を通じて実操作を伴うため、従来のLLMよりも被害が物理的・直接的になりやすい 最小権限の徹底、ガードレールの実装、重要な操作への人...

コンテキストエンジニアリングとは?重要性・プロンプトエンジニアリングとの違い・手順・ポイントを徹底紹介!

コンテキストエンジニアリングとは?重要性・プロンプトエンジニアリングとの違い・手順・ポイントを徹底紹介!

コンテキストエンジニアリングは情報の収集から管理までをシステムとして設計し、AIの判断精度と再現性を根本から高める 不要な情報を削ぎ落とし、メタデータの付与や要...

LLMOpsとは?MLOpsとの違い・導入メリット・最適ツール、活用のコツを徹底解説

LLMOpsとは?MLOpsとの違い・導入メリット・最適ツール、活用のコツを徹底解説

LLM(大規模言語モデル)が急速な進歩を遂げる中で、LLMを活用したシステムの導入に取り組む企業も増えています。しかし、LLMの真価を発揮させるには、開発から運...

エージェンティックAI(エージェント型AI)とは?AIエージェントとの違い・重要技術・導入するためのプラットフォーム・注意点を解説!

エージェンティックAI(エージェント型AI)とは?AIエージェントとの違い・重要技術・導入するためのプラットフォーム・注意点を解説!

エージェンティックAIは、特定のツールの名称ではなく、AI自身が計画・実行・自己修正を繰り返して自律的に目的を達成する「設計思想」 実装には「ReAct(思考と...

マルチエージェントシステム(MAS)とは?仕組み・システム例・メリット・展望を徹底解説!

マルチエージェントシステム(MAS)とは?仕組み・システム例・メリット・展望を徹底解説!

マルチエージェントシステム(MAS)とは、まるでプロジェクトチームのように、リーダー型AIエージェントが複数のスペシャリスト型AIエージェントを指揮し、複雑なタ...

1 2 3